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ABSTRACT o

Dunnetc‘(1955) developed a procedure comparing m treatments to one
control wifh an exact overall type I error of a when all sampling
distributions are normal. Sometimes it is desirable to compare m treatments
to kié controls. In particular, it is often desired to compare m treatments
with two controls. For instance, several new treatments (e.g., pain
relievers) could be compared to two standard treatments (e.g., Aspirin and
Tylenol). Alternatively, a standard treatment could be very expensive,
difficult to apply and/or have bad side effects, making it useful to compare
each new treatment to both standard treatment and no treatment (Placebo).

Dunnett’s method is expanded here to give comparisons of mean values for
m treafments to mean values foénigé:;ogz;ols at an exact overall type I error
of a when all sampling distribusiopf are normal. Tabled values needed to make
exact simultaneous comparisons :£\4-.05 are given for k=2. An application is
made to an illustrative example from the literature. (}”‘**——~
AMS SUBJECT CLASSIFICATION: 62F25, 62F03, 62Q0S5.
KEY WORDS: Simultaneous Inference; Multiple Treatments; Multiple Controls;

Dunnett'’s Procedure.

I. INTRODUCTION

Simultaneous comparison of m new treatments to one control has been well
studied. The standard situation modeled is for n observations, sampled from
each treatment group and the control group with independence of all
observations, each control group observation distribured N(u., 0?), and each
observation from treatment group j distributed N(pe 0%) for j=1,...,m.
Confidence inuvervals for (ptj- po), the difference between each treatment mean
and the control mean, are desired (the treatment being declared different from

L

the control if the interval doesn’t cover zero). It is important to limit the




probability of ome, or more, confidence intervals not containing the true
values (overall type I error) to some value a (usually ao=.05) to prevent
spurious findings.

'Often, ﬁhe investigator is only interested in & lower bound estimate for
the improvement each treatment gives over the control. When larger means are
uesirable, one sided lower confidence intervals of the form:

(B, = B) 2 Ly (for L; some function of the data) j=1,...,m

can be used. Ii smaller means are desirable, then one sided upper confidence
intervals can be used. From now on WLOG we assume larger means are desirable.
Sometimes the investigator wishes to have both upper and lower bounds for the
improvement each treatment gives over the control, requiring two sided
confidence intervals of the form:
Ij < (ptj - Bc) = Uy (for L; and U; some functions of the data)
and j=1,...,m.

Dunnet’'s (1955) well known procedure gives one sided (or two sided)
confidence intervals with a simultaneous overall type I error of a. These
confidence intervals have the form:

One sided: (ptj -p) 2 X -%) -tQ/2s//m for j=1,...,m.

Two sided: (ytj’; p) € (X - %) £ t2 /2 s//a for j=1,...,nm.

Here R. is the sample average of all control group observations, Xt
is the sample average of all treatment group j observations j=1,...,m and s
is the pooled estimate of the standard deviation.

Note that tl}) and t‘?’ are constants that depend on a. Dunnett’'s
confidence intervals also have the nice property of symmetry: the type I
error for each individual comparison is the same.

Sometimes it may be desired to simultaneously compare m new treatments




to k>2 controls. In particular, it is often of interest to coupare m new
treatments to two controls. For example:

(A) - Two commonly used treatments (e.g., Aspirin and Tylenol) are
each éompared with m new treatments (e.g., m new pain relievers).

(B) - A standard treatment and a placebo are each compared with m new
treatments. Two situations this might arise in are: (i) The standard
treatment is expensive, has undesirable side effects or is otherwise
impractical to use in some situations. The new treatments do not suffer from
these problems and thus under certain conditions will be used if they can be
shown to be better than placebo. (ii) The new treatments are in a
developmental stage., Promising treatments (those which work better than no
treatment) may be furtﬂer developed and expanded testing will be done of
treatments already performing better than the standard treatment.

Graham, et al. (1988) compared a particular class of
antipyretic/analgesic treatment and a placebo to two standard therapies
(considered controls here) in a study of undesirable side effects. They
hypothesized that two standard treatments for cold symptoms (Aspirin and
Ibuprofen) had adverse effects on the immune function (e.g., post virus
challenge specific ;ncibody response) and resulted in more virus shedding than
did no treatment at all (placebo). They also hypothesized that a different
class of cold symptom treatments, acetaminophen, had less adverse effects on
the immune function and caused less virus shedding than did Aspirin or
Ibuprofen.

As before, it is assumed that n observations are sampled from each
treatment and control group with independence; those from the ith control

group (c;) distributed N(u. , 0?) for i-l,...,k,; and those from the jth
i




treatment group (ty) distributed N(ptj, 0?) for j=1,...,m. Also th is
the sample mean of all observations in the jth treatment group, while Xci is
the sample mean of all observations in the ith control group.

It is now desired to give simultaceous confidence intervals for

(pt - pci) where j-lﬂf,;,m and i=1,...,k. In Section II, Dunnett’s

A

methodology developed for k=1 controls is expanded on to work for k=Z
controls., The ¢ onfidence intervals will be of the form:
Cne sided: (#tJ — B )2 (th - Xci) - d¥/2 s//n (1)
Two-sided: (ptj = He,) € (xtj - xci) + d2 /2 s//n (2)
where df}’ and d‘2’are the constants which make simultaneous coverage of the
above one and two-sided confidence intervals equal to l-a. These confidence
intervals also have the property of symmetry.
II. DEVISING THE EXACT CONFIDENCE INTERVALS
The Qalues for dl’and d‘?’ making the overall type I error of the above
one and two-sided confidence intervals equal to a are derived using order
statistics of the standardized control means along with mutual independence of
control means, treatment means and s. Two sided confidence interval results
are more difficult to obtain and are dealt with first.
a. Two_Sided Confidence Intervals
Define the standardized treatment group means and control groups means
as:

Ty = (ptj - th) Jojo for j = 1....m (3)

C, - (pci - xci) Jn/o for i = 1... k. (4)
Now all two-sided confidence intervals given in (2) contain the true

differences if and only if:




ITy = C | <d®/2 - s/o for all i and j. (5)
If W and V are the maximum and minimum values among C,,C,,...,C, then (5) is

true if and unly if:

T, -W>-d? /2 . s/o for all j=1,...,m (6)
and

Ty - V< d3J/2 . s/o for all j=1,...,m. (7)

Now Ty, T5,...,T, and C;, C,...,Cy are all independent and identically

distribucted N(0,1) variables. The joint density of the order statistics (W,
V) is easily obtained from a well known formula, e.g. in Mood, Graybill and
Boes (1974) and is:
f(Vav, W=w) = 2 $(v) ¢(w) [®(W) = &(V)]*? I{w>v)
where # and ¢§ are the standard normal cumulative distribution and standard
normal density function respectively. If S =s/o0 and r is the degrees of
freedom of s, then r(S,)? has a X?, distribution. Also (W, V) is indeperdent
of S, and of T,,...,T,. For any fixed values S =s,, V=v and W=w, (w>v) the
probability that { | T; = C; | < J2 S, d'?’) for all i = 1,...,k is the same
as the probability that { T, - v< /2 s, d¥and T, - w > /2 s, d2?). This
probability equals:
Max [0, (®(Vv + J2 s,d2) - & (w - /2 s, d'¥)]. (8)
By independence of the Ty:j=1,...,m and still conditioning on W=w, V=v
and Sg=sq, the probability that ( Ty - v < /2 s, dPand Ty - w > - /2 s, d?)
for all j is:
[Max [0, (® (v + J2 s, d¥) - &(w - /2 s, d¥))]]".
Using the independence of (W, V) from S, and integrating over their
joint density gives the unconditional probability of coverage by the intervals

in (2) as:




T L5 00 e (xss®) 8(v) o(w) [8(w) = &(v) )2
[Max [0, ®&(v + J2 d@s, ) - &(w — J2 d@s,)]]® d(rs,?) dv dw. (9)
where ¥,(¢) is the standard X? density function. This three dimensional
interval can be evaluated using a powerful computer such as a Cray, FPS 264 or
an IBM 3030.
When the probability in (9) equals (l-a), then the probability that all
the intervals in (2) simultaneously contain the true differences is (l-a).
This means that the overall Type I error is a. By iteration, from initial
guesses, the value of d‘2) whicl will set the probability in (9) equal to
(1—a) can be found.
Note that when k is two (i.e., there are two control groups) then
[®(w) 5 &(V)]¥2 =1, and so this term drops out of formula (9). When o is
known, or csvmptotically when r is large, S, can be set to 1 eliminating the
inner integrand and reducing (9) to a two dimensional integral that can be
easily evaluated on most mainframe computers. There do not appear to be any
asymptotic simplifications of (9) as m and/or k get large.
b. One Sided Confidence Limits
The one sided lower confidence limits given in (1) will all contain the
true values if and only if
(T4~Cy) > J2 S, A} for all j=1,...,m and i=1,....k. (10)
which is true if and only if
) (T;=V) > J2 s, d'Y for all j = 1,...,m. (11)
With the same procedure used for 2 sided confidence intervals, the
simultaneous coverage probability of the one sided upper limits given in

(1G) and (11) can be shown to equal the following integral:

JL T3 %e(rs?) ¢(v) [1 = @(W)IF [8(v+/2dD 5,) )™ d(rs,?) dv. (12)
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This two dimensional integral is easily evaluated on most mainframe computers.
The value of d{l’which makes the overall Type I error equal to (l—a) is
obtainable through iteration from initial guesses.

When o is known, oi asymptotically when r is large, then S, can be set
to 1 eliminating the inner integrand and reducing (12) to a one dimensional
integral. Note, that by symmetry, values for d‘l’used for one sided upper
confidence limits will be the same as those needed for one sided lower
confidence limits.

III. TABLED VALUES

Tables 1 and 2 give values of d‘l’and d‘?’, respectively for k=2, a=.05,
m=1,2,...,10, and various values of r. Values for k > 3 could be just as
easily calculated but are not given here since it is felt that use of 3 or
more controls will not be common.

The tables were constructed by numerical evaluation of the intergrals in
(9) and (12) tc an accuracy of 0.0001. The integration was performed with a
Fortran program using an adaptive Romberg algorithm that was taken from
Rabinowitz (1i984), auu altered to greatly reduce the number of computational
steps. Secant iteration was used to obtain d‘}’and d‘®)to the nearest fourth
decimal place. The results were then rounded to the highest third decimal
place and included in the table. Good approximations of values of
d(}’ (or d‘?’) associated with r not in the tables are obtainable through
standard linear interpolation of d!}’ (or d‘?’) associated with tabled values

of r.




The improvement from using the exact value for k=2 over using the best
available upper bound (Tukey or Bonferroni) depends on a, r and m. Generally,
the improvement increases with m and decreases with r. For instance, the
exact value for d‘}’ with (m=1, r=) is 1.917 which is 2.19% smaller thau is
the Bonferroni upper bound of 1.960. When (m=1, r=5) the exact value for 40’
is 2.441, which is 5.06% smaller than is the Bonferronl upper bound of 2.571.
When (=5, r=«) the exact value is 2.487, which is 3.45% smaller than is the
Bo;ferroni upper bound of 2.576. Finally, when (m=5,r=5) the exact value of
3.469 is 13.96% smaller than is the Bonferroni upper bound of 4.032.

For small a, the improvement decreases as a decreases, due to the
phenomenon of the Bonferroni approximation converging to the exact value as a
decreases which was noted by Dunn (1958). Also, as k increases, the
improvement of the exact value over upper bounds will increase for the same
reason it does as m increases.

IvV. ILLUSTRATIVE EXAMPLE

Below is an illustrative example of two treatments being simu:ltaneously
compared to a control and a placebo. It is adapted from one given by Villars
(1¢51) and used in Dunnett (1955). The data represent measurements on the
breaking strength of untreated fabric (placeho), fabric treated by an
expensive standard method and fabric treated by two proposed less expensive

methods.
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Breaking Strength (1lbs.)

Cy=No Trt C,=Std Trt Ty=New Tret 1 T,=New Trt 2
50 55 55 55
Observations 41 64 49 47
41 61 22 48
Mean 45 61 52 50
Variance 21 27 9 14

Here m=2 and n=3. The Pooled variance estimate is s? = 19 and the degrees of
freedom is 8. The estimated standard error of a difference between two means

is s /2/n = 3.56. Symmetric two sided confidence intervals for

(ptj —‘“Ci) with an overall Type I error of a would take the form given by
(2):
(xtj - xci ) £ d¥ /2/n s for all i and j.

Symmetric one sided lower confidence limits would be given by (1):

& - %

e. ) —dQ/2/n s for all i and j.
j i

t

The exact values for d‘® and 4!}’ obtained from Tables 2 and 1 along
.05 .05

with commonly used upper bounds are given below.

Upper Bounds

Exact (Bonferroni Tukey Schef{fe]
d‘:s’ 3.053 3.210 3.200 3.492
aty) 2.588 2.751 N.A. N.A.

Ninety-five per cent simultaneous confidence intervals for (treatment-control)

differences derived from the exact and best upper bounds are now given.
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Confidence Intervals (95%)
Comparison Two Sided One ded we
Exact Tukey Exact Bonferroni

#tl - “Cl (-3.87, 17.87) (—4.39, 18.39) > =2.22 > -2.96

pcl - pcz (-19.87, 1.87) (-20.39, 2.39) > ~18.22 > -18.96

“t2 - “Cl (-5.87, 15.87) (—6.39, 16.39) > —4.22 > ~4.96

“CZ - pcz (-21.87,-0.13) (-22.39, 0.39) > -20.22 > -20.96

The exact method finds che second new treatment to be significantiyv
worse than the standard treatment when making two sided comparisons at a=.05.
This statistical difference is not seen at a=.05 using the closest upper
bound.

V. VARTATIONS ON ASSUMPTIONS

Formulas (3) and (12) can be altered to allow for unequal sample sizes
and different variances within the control and treatment groups. One such
variation would be having n, observations sampled for each treatment group and
n. observations sampled for each control group with cortrol and treatment
variances the same. Under these assumptions, formula (9) becomes:

JL LB To e(rs?) 2 6(v) ¢(w) [8(w) - 8(W)]¥2 [Max [0, (®(v + ((ne+n.)/a.)h
dPs,) - ¢(w - ((ne+ne)/me)%s d¥sy)) )™ d(rs,?) dv dw.

When given a total of n, observations to be divided among m treatment
groups and k control groups. It can be shown by calculus (as Dunnett (1955)
did for k=1) that the optimal allocation of a fixed number of observations

(n,) to minimize the variance of (Xt. - Xc') istn =Jkn, / ((Jk + /m) m)
j i

and n = /o n, /((fk + Jfm) k).
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VI. VARIATION ON THE CONFIDENCE INTERVALS

Comparing Both Control Groups to Each Other

In case (A) of the introduction, it may sometimes be of interest to also
symmetrically compare the two control groups to each other, as well as,
comparing each treatment to each control, with an overall Type 1 error of a.
To do this requires building a two sided confidence interval for (pcl - pcz)

of the form (Xcl - X%, ) td, /25 in addition to the one or two sided

€2
confidence intervals for the difference in (1). If the intervals for the
differences in (1) are two sided, then the formula for simultaneous coverage
is:
J2 0209 $(xss?) 2 4(v) (W) (B(v + /2 dPs;) ~ &(v —/2 dPs,))"

. dv d(rs,?) dw
where e = w — d‘2?/2 s, If the intervals for the differences in (1) are one
sided, then the formula for simultaneous coverage is:
J T8 0¥ (xs®) 2 ¢(v) ¢(w) (B(v + JZ a¥s,)" dv d(rs.?) dw
vhere e = w - d¥/2 s
Other Varjations

It may be desired to have two sided confidence intervals for the
differences between all treatments and the first control and one sided
confidence limits for the differences between all treatments and the second
control. Sometimes the mean effect of the first control may be known while
that of the second control is not. Both of these previous situations may
occur when the second control is a placebo. For each of these situations it
is possible to produce symmetric confidence intervals having an overall Type I

error of a using modifications of the previous methodology. The formulas

needed, however, are quite complicated.
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20. ABSTRACT

Dunnett (1955) developed a procedure comparing m treatments to one control
with an exact overall tvpe I error of o when all sampling distributions are
normal. Sometimes it is desirable to compare m treatments to k > 2 controls.
In particular, it is often desired to compare m treatments with two controls.
For instance, several new treatments (e.g., pain relievers) could be compared to

two standard treatments (e.g., Aspirin and Tylenol). Alternatively, a standard

treatment could be very expensive, difficult to apply and/or have bad side effects,

making it useful to compare each new treatment to both standard treatment and no

treatment (Placebo).

Dunnett's method is expanded here to give comparisons of mean values for
m treatments to mean values for k > 2 controls at an exact overall type I error
of o when all sampling distributions are normal. Tabled values needed to make
exact simultaneous comparisons at a=.05 are given for k=2 . An application is

made to an illustrative example from the literature.
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